有志始知蓬莱近
无为总觉咫尺远

泰晶科技是芯片股吗(湖北泰晶电子科技股份有限公司怎么样?)

湖北泰晶电子科技股份有限公司怎么样?

简介:湖北泰晶电子科技股份有限公司于2005年11月4日在随州市工商行政管理*登记成立。法定代表人喻信东,公司经营范围包括晶体生产自动化设备、零部件、电子元件、组件及汽车零部件研发等。法定代表人:喻信东成立时间:2005-11-04注册资本:15869.84万人民币工商注册号:421300000000452企业类型:其他股份有限公司(上市)公司地址:随州市曾都经济开发区

泰晶科技是下一个穿越龙?——7月1日早盘内参

周末全是利好,A股下半年的首秀要以大幅向上跳空做开场了。

相信大家的意念盘都要涨停了

有先手的都是大肉,没有的也不好接。指数涨起来了,自己买的股却还亏钱的剧本还会上演。

所以,除非是周五强势的高标股,或者直接受益的华为产业链,其它的一律不要去追。

泰晶科技:华为+5G+芯片,4连板,两市空间板。周五唯一进阶的三板。目前市场情绪逐步修复,该股极有可能穿越成为下半年的第一只大妖股。

联泰环保:垃圾分类+填权,2连板。在中原环保和联泰环保的较量中,尽管前者走的更强一点,但我更看好换手板的持续性。

绿色动力:垃圾处理+远端次新,8天6板,都是一路换手上来的,属于环保板块中辨识度较高的一个,定位为二波预期。

长城证券:金融证券类个股也是受益板块,肯定会卷土重来,而且证券板块每次的龙头都不一样,这次押注近期走势更强势一点的长城证券。

帝尔激光:次新+光伏,周五冲高回落,股价抵近前期高点。周末证监会核发2家企业IPO,对次新板块构成利好。

沪电股份:5G+芯片+华为,周五龙虎榜比较豪华,柚子大手笔买入。主要炒作的还是中期业绩,后期逐步进入中报披露期,业绩这条线要重视起来。

找了个表供大家参考

最后再次提醒一句,非主流热点不要去追高!!!

予我一指关注,许你半世繁华。

感谢朋友们的关注,祝大家好运!

芯片创新类股票都有哪些?

只做国民技术一只股就好,同时具备物联网和高送转两个特征,也是芯片制造的龙头,看多了不好,这只股在今年的3季度同时也成为基金重仓股,年报快出来了,肯定会有不错的涨幅,可惜股价贵了点,我只是一学金融的学生,还差几百才买的起,呵呵~~

732738来自泰晶申购流通股多少

1668万股

第三代半导体SIC行业投资机会分析:10年20倍成长 - 比玩财富

SIC材料具有明显的性能优势。SiC和GaN是第三代半导体材料,与第一二代半导体材料相比,具有更宽的禁带宽度、更高的击穿电场、更高的热导率等性能优势,所以又叫宽禁带半导体材料,特别适用于5G射频器件和高电压功率器件。

SIC的功率器件如SICMOS,相比于Si基的IGBT,其导通电阻可以做的更低,体现在产品上面,就是尺寸降低,从而缩小体积,并且开关速度快,功耗相比于传统功率器件要大大降低。

在电动车领域,电池重量大且价值量高,如果在SIC器件的使用中可以降低功耗,减小体积,那么在电池的安排上就更游刃有余;同时在高压直流充电桩中应用SIC会使得充电时间大大缩短,带来的巨大社会效益。

根据Cree提供的测算:将纯电动车BEV逆变器中的功率组件改成SIC时,大概可以减少整车功耗5%-10%;这样可以提升续航能力,或者减少动力电池成本。

13制约产业发展的主要瓶颈在于成本和可靠性验证

行业发展的瓶颈目前在于SIC衬底成本高:目前SIC的成本是Si的4-5倍,预计未来3-5年价格会逐渐降为Si的2倍左右,SIC行业的增速取决于SIC产业链成熟的速度,目前成本较高,且SIC器件产品参数和质量还未经足够验证;

SICMOS的产品稳定性需要时间验证:根据英飞凌2020年功率半导体应用大会上专家披露,目前SiCMOSFET真正落地的时间还非常短,在车载领域才刚开始商用(Model3中率先使用了SICMOS的功率模块),一些诸如短路耐受时间等技术指标没有提供足够多的验证,SICMOS在车载和工控等领域验证自己的稳定性和寿命等指标需要较长时间。

SIC产业链分为三大环节:上游的SIC晶片和外延→中间的功率器件的制造(包含经典的IC设计→制造→封装三个小环节)→下游工控、新能源车、光伏风电等应用。目前上游的晶片基本被美国CREE和II-VI等美国厂商垄断;国内方面,SiC晶片商山东天岳和天科合达已经能供应2英寸~6英寸的单晶衬底,且营收都达到了一定的规模(今年均会超过2亿元RMB);SiC外延片:厦门瀚天天成与东莞天域可生产2英寸~6英寸SiC外延片。

21应用:新能源车充电桩和光伏等将率先采用

SiC具有前述所说的各种优势,是高压/高功率/高频的功率器件相对理想的材料,所以SiC功率器件在新能源车、充电桩、新能源发电的光伏风电等这些对效率、节能和损耗等指标比较看重的领域,具有明显的发展前景。

高频低压用Si-IGBT,高频高压用SiCMOS,电压功率不大但是高频则用GaN。当低频、高压的情况下用Si的IGBT是最好,如果稍稍高频但是电压不是很高,功率不是很高的情况下,用Si的MOSFET是最好。如果既是高频又是高压的情况下,用SiC的MOSFET最好。电压不需要很大,功率不需要很大,但是频率需要很高,这种情况下用GaN效果最佳。

以新能源车中应用SICMOS为例,根据Cree提供的测算:将纯电动车BEV逆变器中的功率组件改成SIC时,大概可以减少整车功耗5%-10%;这样可以提升续航能力,或者减少动力电池成本。

同时SICMOS在快充充电桩等领域也将大有可为。快速充电桩是将外部交流电,透过IGBT或者SICMOS转变为直流电,然后直接对新能源汽车电池进行充电,对于损耗和其自身占用体积问题也很敏感,因此不考虑成本,SICMOS比IGBT更有前景和需求,由于目前SIC的成本目前是Si的4-5倍,因此会在高功率规格的快速充电桩首先导入。在光伏领域,高效、高功率密度、高可靠和低成本是光伏逆变器未来的发展趋势,因此基于性能更优异的SIC材料的光伏逆变器也将是未来重要的应用趋势。

SIC肖特基二极管的应用比传统的肖特基二极管同样有优势。碳化硅肖特基二极管相比于传统的硅快恢复二极管(SiFRD),具有理想的反向恢复特性。在器件从正向导通向反向阻断转换时,几乎没有反向恢复电流,反向恢复时间小于20ns,因此碳化硅肖特基二极管可以工作在更高的频率,在相同频率下具有更高的效率。另一个重要的特点是碳化硅肖特基二极管具有正的温度系数,随着温度的上升电阻也逐渐上升,这使得SIC肖特基二极管非常适合并联实用,增加了系统的安全性和可靠性。

22空间&增速:SIC器件未来5-10年复合40%增长

IHS预计未来5-10年SIC器件复合增速40%:根据IHSMarkit数据,2018年碳化硅功率器件市场规模约39亿美元,受新能源汽车庞大需求的驱动,以及光伏风电和充电桩等领域对于效率和功耗要求提升,预计到2027年碳化硅功率器件的市场规模将超过100亿美元,18-27年9年的复合增速接近40%。

SICMOS器件的渗透率取决于其成本下降和产业链成熟的速度,根据英飞凌和国内相关公司调研和产业里的专家的判断来看,SICMOS渗透IGBT的拐点可能在2024年附近。预计2025年全球渗透率25%,则全球有30亿美金SICMOS器件市场,中国按照20%渗透率2025年则有12亿美金的SICMOS空间。即不考虑SICSBD和其他SIC功率器件,仅测算替代IGBT那部分的SICMOS市场预计2025年全球30亿美金,相对2019年不到4亿美金有超过7倍成长,且2025-2030年增速延续。

23格*:SIC器件的竞争格*

目前,碳化硅器件市场还是以国外的传统功率龙头公司为主,2017年全球市场份额占比前三的是科锐,罗姆和意法半导体,其中CREE从SIC上游材料切入到了SIC器件,相当于其拥有了从上游SIC片到下游SIC器件的产业链一体化能力。

国内的企业均处于初创期或者刚刚介入SIC领域,包括传统的功率器件厂商华润微、捷捷微电、扬杰科技,从传统的硅基MOSFET、晶闸管、二极管等切入SIC领域,IGBT厂商斯达半导、比亚迪半导体等,但国内当前的SIC器件营收规模都比较小(扬杰科技最新披露SIC营收2020年上半年1928万元左右);

未上市公司和单位中做的较好的有前面产业链总结中提到的一些,包括:

泰科天润:可以量产SiCSBD,产品涵盖600V/5A~50A、1200V/5A~50A和1700V/10A系列;并且早在2015年,泰科天润就宣布推出了一款高功率碳化硅肖特基二极管产品,是从事SIC器件的较纯正的公司;

中电科55所:国内从4-6寸碳化硅外延生长、芯片设计与制造、模块封装实现全产业链的单位;

深圳基本半导体:成立于2016年,由清华大学、浙江大学、剑桥大学等国内外知名高校博士团队创立,专注于SIC功率器件,也是深圳第三代半导体研究院发起单位之一,目前已经开始推出其1200V的SiCMOSFET产品。

天科合达是国内第三代半导体材料SIC晶片的领军企业:公司成立于2006年9月12日,2017年4月至2019年8月在全国股转系统挂牌转让,2020年7月拟在科创板市场上市。

公司成长速度极快,2017-2019年公司收入由024亿增长至155亿元,两年复合增长率154%。

营收构成:SIC晶片占比约为一半

公司营收由三部分构成:碳化硅晶片占比4812%,宝石等其他碳化硅产品占比3665%,碳化硅单晶生长炉占比1523%。

设备自制:从设备到SIC片一体化布*

公司以高纯硅粉和高纯碳粉作为原材料,采用物理气相传输法(PVT)生长碳化硅晶体,加工制成碳化硅晶片;其中的碳化硅晶体的生长设备-碳化硅单晶生长炉公司也能完成自制并对外销售。

公司地位:2018年,以导电型的SIC来看,天科合达以17%的市场占有率排名全球第六,排名国内导电型碳化硅晶片第一。

1、半绝缘SIC片的领军企业:公司成立于2010年,专注于碳化硅晶体衬底材料的生产;公司产品主要在半绝缘型的SIC片。公司投资建成了第三代半导体材料产业化基地,具备研发、生产国际先进水平的半导体衬底材料的软硬件条件,是我国第三代半导体衬底材料行业的先进企业。

2、成长能力:据了解,公司收入从2018年收入11亿左右增加至2019年超过25亿总收入(其中也有约一半是SIC衍生产品宝石等),同比增长100%以上。公司的SIC片主要集中在半绝缘型,而天科合达主要集中在导电型。

3、华为入股:华为旗下的哈勃科技投资持股山东天岳817%。

4、生产能力(公司采用的是长晶炉的数量进行表征):山东天岳的产能主要由长晶炉的数量决定,2019年产线上长晶炉接近250台,销售衬底约25万片,预计年底前再购置一批长晶炉,目标增加至550台以上;

5、销售价格:2018、2019年公司衬底平均销售价格大数大约在6300元/片、8900元/片,预计今年的平均价格将会突破9000元,价格变动的主要原因是2,3寸小尺寸衬底、N型等相对低价的衬底销售占比逐步降低,高值的4寸高纯半绝缘产品占比逐步提升导致单位售价提高。

6、技术实力:山东天岳的碳化硅技术起源于山东大学晶体国家重点实验室,公司于2011年购买了该实验室蒋明华院士专利,并投入了大量研发,历经多年工艺积累,将碳化硅衬底从实验室的技术发展成为了产业化技术;山东天岳除30人的研发团队外,还在海外设有6个联合研发中心;公司拥有专利近300项,其中先进发明专利约50多项,先进实用性专利约220项,申请中的发明专利约50多项。

1、斯达半导975%的收入均是IGBT,是功率半导体已上市公司中最纯正的IGBT标的,2019收入78亿(yoy+154%),归母净利润135(yoy+398%),IGBT模块全球市占率2%,排名全球第八;

2、斯达半导在积极进行第三代半导体SIC的布*。公司SiC相关的产品和技术储备在紧锣密鼓的进行:

3、公司在未来重点攻关技术研发与开发计划:

主要提到三项重要产品开发:1、全系列FS-Trench型IGBT芯片的研发;2、新一代IGBT芯片的研发;3、SiC、GaN等前沿功率半导体产品的研发、设计及规模化生产:公司将坚持科技创新,不断完善功率半导体产业布*,在大力推广常规IGBT模块的同时,依靠自身的专业技术,积极布*宽禁带半导体模块(SiC模块、GaN模块),不断丰富自身产品种类,加强自身竞争力,进一步巩固自身行业地位。

2020年6月5日,客车行业规模领先的宇通客车宣布,其新能源技术团队正在采用斯达半导体和CREE合作开发的1200VSiC功率模块,开发业界领先的高效率电机控制系统,各方共同推进SiC逆变器在新能源大巴领域的商业化应用。

宇通方面表示,“斯达和CREE在SiC方面的努力和创新,与宇通电机控制器高端化的产品发展路线不谋而合,同时也践行了宇通“为美好出行”的发展理念,相信三方在SiC方面的合作一定会硕果累累。”

我们在之前发布的斯达半导深度报告中测算斯达在不同SIC渗透率和不同SIC市占率情境下2025年收入弹性,中性预计2025年斯达在国内的SIC器件市占率为6-8%。预计2023-2024年国内SIC产业链如山东天岳、三安光电等更加成熟后,SIC将迎来替代IGBT拐点,但是IGBT和SICMOS等也将长期共存,相信国内的技术领先优质的IGBT龙头斯达半导能够不断储备相关技术和产品,积极拥抱迎接这一行业创新。

1、公司主要从事化合物半导体材料的研发与应用,以砷化镓、氮化镓、碳化硅、磷化铟、氮化铝、蓝宝石等半导体新材料所涉及的外延片、芯片为核心主业,产品主要应用于照明、显示、背光、农业、医疗、微波射频、激光通讯、功率器件、光通讯、感应传感等领域;

2、公司主业LED芯片,占公司营收的80%以上,LED是基于化合物半导体的光电器件,在衬底、外延和器件环节具有技术互通性;

3、公司专注于化合物半导体的子公司三安集成,2019年业务与同期相比呈现积极变化:

1)射频业务产品应用于2G-5G手机射频功放WiFi、物联网、路由器、通信基站射频信号功放、卫星通讯等市场应用,砷化镓射频出货客户累计超过90家,客户地区涵盖国内外;氮化镓射频产品重要客户已实现批量。生产,产能正逐步爬坡;

2)2020年6月18日公司公告,三安光电决定在长沙高新技术产业开发区管理委员会园区成立子公司投资建设包括但不限于碳化硅等化合物第三代半导体的研发及产业化项目,包括长晶—衬底制作—外延生长—芯片制备—封装产业链,投资总额160亿元,公司在用地各项手续和相关条件齐备后24个月内完成一期项目建设并实现投产,48个月内完成二期项目建设和固定资产投资并实现投产,72个月内实现达产;

3)三安集成推出的高功率密度碳化硅功率二极管及MOSFET及硅基氮化镓功率器件主要应用于新能源汽车、充电桩、光伏逆变器等电源市场,客户累计超过60家,27种产品已进入批量量产阶段。

4)三安集成19年实现销售收入241亿元,同比增长4067%;三安集成产品的认可度和行业趋势已现,可以预见未来在第三代材料SiC/GaN的功率半导体中发展空间非常广阔。

1、公司是中国领先的拥有芯片设计、晶圆制造、封装测试等全产业链一体化经营能力的半导体企业,产品聚焦于功率半导体、智能传感器与智能控制领域;

2、产品与制造并行:公司2019年收入57亿元,其中产品与方案占比438%,制造与服务占比55%,制造与服务业务主要是晶圆制造和封测业务;产品与方案主体主要是功率半导体,占比90%,包括MOSFET、IGBT、SBD和FRD等产品;

3、公司目前拥有6英寸晶圆制造产能约为247万片/年,8英寸晶圆制造产能约为133万片/年,具备为客户提供全方位的规模化制造服务能力;

4、SIC领域积极布*:在2020年7月4日,公司进行了SIC产品的发布会,发布了全系列的1200V/650V的SIC二极管产品,公司有望通过IDM模式在SIC材料的各个功率半导体产品领域深耕并持续受益于产品升级和国产替代。

1、公司是国内晶闸管龙头,持续布*MOSFET和IGBT等高端功率半导体器件。按照公司年报口径,2019年功率分立器件收入占比75%,功率半导体芯片收入占比23%;公司的功率分立器件,50%左右业务是晶闸管(用于电能变换与控制),还有部分二极管业务,其余是防护器件系列(主要作用是防浪涌冲击、防静电的电子产品内部,保护内部昂贵的电子电路);

2、公司于2020年2月27日与中芯集成电路制造(绍兴)有限公司(简称“SMEC”)签订了《功率器件战略合作协议》,在MOSFET、IGBT等相关高端功率器件的研发和生产领域展开深度合作;公告披露,捷捷微电方保证把SMEC作为战略合作伙伴,最大化的填充SMEC产能,2020年度总投片不低于80000片,月度投片不低于7000片/月。

3、公司长期深耕晶闸管和二极管等分立器件,这些客户和MOSFET和IGBT等相关高端功率器件有重叠,公司从晶闸管领域切入到MOS后,在这两个产品大类上也将积极应用第三代半导体SIC,为后续提升自身器件性能和产品竞争力做好准备。

1、公司是产品线较广的功率分立器件公司。公司产品主要包括功率二极管、整流桥、大功率模块、小信号二三极管,MOSFET,也有极少部分的IGBT产品。按照公司年报口径,2019年功率分立器件收入占比80%,功率半导体芯片收入占比138%,半导体硅片业务占比455%。

2、公司第三代半导体SIC器件目前收入较少。公司积极布*高端功率半导体,筹备建立无锡研发中心,和中芯国际(绍兴)签订保障供货协议,持续扩充8寸MOS产品专项设计研发团队,已形成批量销售的TrenchMOSFET和SGTMOS系列产品。

3、SIC产品目前占比小:公司2020年9月公告,目前主营产品仍以硅基功率半导体产品为主,第三代半导体产品的销售收入占比较小,2020年1-6月,公司碳化硅产品的销售收入为1928万元。

4、我们认为同捷捷微电一样,公司是中低端功率器件利基市场龙头,虽然目前SIC产品的占比较小,主要是由于国内产业链成熟度的拐点刚刚到来;未来公司将积极布*各种基于SIC材料的功率器件,从而提高其产品性能并实现市场占有率持续稳步提升,打开业务天花板和想象空间。

1、传统主业是电磁线产品:公司是专业的节能电机、电磁线、涡轮增压器、蓝宝长晶片研发、生产、销售于一体的企业,公司主要产品有各类铜、铝芯电磁线、超微细电磁线、小家电节能电机、无刷电机、数控电机、涡轮增压器和蓝宝石长晶设备等产品。公司是国内主要电磁线产品供应商之一,也是国内最大的铝芯电磁线和超微细电磁线产品生产基地之一。

2、SIC长晶设备已经开始对外供货:露笑科技基于蓝宝石技术储备,经过多年研发已快速突破碳化硅工艺壁垒,在蓝宝石基础上布*碳化硅长晶炉和晶片生产。碳化硅跟蓝宝石从设备、工艺到衬底加工有较强的共同性和技术基础,例如精确的温场控制、精确的压力控制、精确的籽晶晶向生长以及基片加工等壁垒。公司在多年蓝宝石生产技术支持下成功研发出碳化硅自主可控长晶设备,并在2019年开始对外供货SIC长晶设备。

4、公司布*SIC的人才优势:公司引进具有二十多年碳化硅行业从业经验的技术团队,开展碳化硅衬底及外延技术研究,加码布*碳化硅产业。2020年4月,公司发布非公开募集资金公告,拟募集资金总额不超过10亿元,用于新建碳化硅衬底片产业化项目、碳化硅研发中心项目和偿还银行贷款。随着公司碳化硅产品研发并量产,公司有望取得一定的市场份额。

5、与合肥合作打造第三代半导体SIC产业园:2020年8月8日与合肥市长丰县人民**在合肥市**签署《合肥市长丰县与露笑科技股份有限公司共同投资建设第三代功率半导体(碳化硅)产业园的战略合作框架协议》。包括但不限于碳化硅等第三代半导体的研发及产业化项目,包括碳化硅晶体生长、衬底制作、外延生长等的研发生产,项目投资总规模预计100亿元。

(报告观点属于原作者,仅供参考。作者:华安证券,尹沿技)

半导体行业的产业链主要是由芯片设计、代工制造、封装测试三部分,以及产业链外部的材料,设备供应商组成。

半导体设计:民德电子、欧比特(IC设计)、寒武纪(SOC芯片设计)、格科微、华微电子、力合微(芯片设计原厂)

集成电路包括存储芯片(NANDFlash、NORFlash、DRAM)、CPU、GPU、MCU、FPGA、DSP、触控与指纹识别芯片、射频前端芯片、模拟芯片。

存储芯片:兆易创新、北京君正、国科微、聚辰股份(NORFlash)

CPU(中央处理器):、中科曙光、长电科技

GPU(图形处理器):景嘉微

MCU(微控制器):兆易创新、富满微、芯海科技、ST大唐、力合微

FPGA(半定制电路芯片):紫光国微、复旦微电、安路科技

DSP(数字信号处理器):国睿科技、四创电子、力合微

触控与指纹识别芯片:汇顶科技、兆易创新

射频前端芯片:卓胜微、三安光电、富满微、立昂微(6英寸砷化镓微波射频芯片)、艾为电子

模拟芯片:圣邦股份、韦尔股份、汇顶科技、北京君正、芯海科技(模拟信号链)、亚光科技(孙公司华光瑞芯是模拟芯片研发生产商)、艾为电子

数字芯片:晶晨股份、乐鑫科技、瑞芯微、全志科技

功率芯片:斯达半导、捷捷微电、晶丰明源

WiFi芯片:华胜天成、博通集成

LED:三安光电(砷化镓、氮化镓、碳化硅、磷化铟、氮化铝、蓝宝石等半导体新材料所涉及的外延片、芯片)、洲明科技、华灿光电(LED外延片及全色系LED芯片)、聚灿光电(GaN基高亮度LED外延片、芯片)、乾照光电(全色系LED外延片和芯片)、利亚德

Miniled:京东方A、TCL

3分立器件包含IGBT、MOSFET、功率二极管、晶闸管、晶振、电容电阻

IGBT:斯达半导、时代电气、台基股份、士兰微、扬杰科技、紫光国微、华微电子、新洁能

MOSFET:华润微、士兰微、富满微、立昂微、扬杰科技、银河微电、捷捷微电、苏州固锝、新洁能

功率二极管:扬杰科技、台基股份(整流管)、士兰微(快恢复二极管FRD、瞬态抑制二极管TVS、发光二极管)、银河微电、华微电子、苏州固锝

晶闸管:捷捷微电、台基股份、捷捷微电、派瑞股份(高压直流阀用晶闸)

晶振:泰晶科技

电容电阻:风华高科

敏芯股份(MEMS传感器)、华润微(智能传感器)、士兰微(MEMS传感器)、光莆股份(半导体光电传感器)

晶圆加工:中芯国际

开放式晶圆制造:华润微

MEMS晶圆制造:赛微电子

长电科技、通富微电、华天科技、晶方科技、康强电子、华润微、大港股份、气派科技、华微电子、兴森科技(半导体测试板)、苏州固锝

硅片:沪硅产业、中环股份、立昂微(半导体硅片)、神工股份(单晶硅材料)、中晶科技

光刻胶:南大光电、容大感光、飞凯材料、晶瑞股份、雅克科技、安泰科技

特种气体:华特气体、雅克科技

湿电子化学品:江化微

靶材:江丰电子、隆华科技、有研新材、阿石创(溅射靶材)、江丰电子(高纯溅射靶材)

CMP抛光材料:安集科技、鼎龙股份

高纯试剂:上海新阳、晶瑞股份、

氮化镓GaN:富满电子、奥海科技(氮化镓充电器)、聚灿光电(GaN基高亮度LED外延片、芯片)、闻泰科技、赛微电子[6-8英寸硅基氮化镓(GaN-on-Si)、碳化硅基氮化镓(GaN-on-SiC)]、海能实业(快充氮化镓产品)、兆驰股份[兆驰半导体生产蓝绿光(GaN)与红黄光(GaAs)外延及芯片]、亚光科技

碳化硅Sic:露笑科技(碳化硅衬底片、外延片)、楚江新材、闻泰科技、天富能源(Sic衬底环节,参股天科合达)、三安光电(砷化物、氮化物、磷化物及碳化硅等化合物半导体新材料所涉及的外延片、芯片)、时代电气、捷捷微电、温州宏丰(碳化硅单晶研发)、紫光国微、晶盛机电(碳化硅长晶设备)、甘化科工(参股苏州锴威特半导体)、东尼电子、易事特

光刻机:

刻蚀机:中微公司(等离子体刻蚀设备、CPP,ICP)、芯源微(湿法刻蚀机)、北方华创

离子注入设备:万业企业

炉管设备:北方华创、晶盛机电

清洗设备:北方华创、至纯科技(半导体湿法清洗设备研发)、芯源微

检测设备:精测电子、华峰测控、长川科技

物理气相沉积设备PVD:北方华创、华亚智能(半导体设备领域结构件)

化学气相沉积设备CVD:北方华创、晶盛机电、华亚智能(半导体设备领域结构件)

涂胶/显影机:芯源微

喷胶机:芯源微

原子层沉积设备ALD:北方华创

MOCVD设备:中微公司

半导体微组装设备:易天股份

华为海思半导体供应商:铭普光磁

掩膜版:清溢光电

PVD镀膜材料:阿石创

镀膜设备:立霸股份(参股拓荆科技)

印刷电路板PCB:澳弘电子、协和电子、华正新材[覆铜板(CCL)]、兴森科技、金安国纪、迅捷兴、本川智能、胜宏科技、四会富仕、超声电子、奥士康、沪电股份、明阳电路、广东骏亚

单晶拉制炉热场系统:金博股份

工业视觉装备:天准科技

石英晶体:惠伦晶体、东晶电子

电容器:江海股份、艾华集团、铜峰电子

FPC线路板:风华高科、ST丹邦

我国风力发电上市公司的股票较多,风电板块中比较不错的股票有:中天科技、斯达半导、新强联、易事特、东方电气、中航重机、沃尔核材、湘电股份、华仪电气和中路股份等。

国内光电缆品种最齐全的专业企业,经营的业务中主要是与光纤通信和电力传输有关。它的主要工作包括光通信及网络、新能源、海洋系列、电力传输、铜产品、商品贸易。

斯达半导体股份有限公司(股票简称:斯达半导)是上海主板上市公司,不是科创板公司。斯达半导于2020年1月15日通过上海证券交易所交易系统网上定价初始发行“斯达半导”A股股票1600万股。斯达半导主要从事以IGBT为主的功率半导体芯片和模块的设计研发和生产,并以IGBT模块形式对外实现销售。

洛阳新强联回转支承股份有限公司(以下简称新强联)成立于2005年,2020年7月公司在深圳证券交易所创业板上市(简称“新强联”,股票代码“300850”)。新强联以大型回转支承产品和风力发电机偏航变桨轴承及主轴承产品研发、制造、销售为主,是服务于风力发电、海工装备、港口机械、船用机械、盾构机设备等行业的创新型龙头企业。

易事特始建于1989年,长期致力于UPS电源、EPS电源、电力电源等电源产品的研发、生产和销售,是全球领先的整体电源解决方案供应商。是国内少数能提供全系列UPS及其他各类电源产品的厂家之一,公司现有产品主要有九大系列:UPS电源、智能电力操作电源、EPS应急电源、交直流稳压电源、变频电源、专用逆变电源、机房集成系统、免维护铅酸蓄电池、网络电源监控系统。

1存储半导体龙头股有兆易创新、斯达半导、景嘉微、汇顶科技等等。

2兆易创新是半导体存储龙头股。12月7日消息,兆易创新截至收盘,该股跌094%,报171元;5日内股价上涨312%,市值为114087亿元。12月7日消息,兆易创新主力资金净流出102438万元,超大单资金净流出341618万元,散户资金净流入812712万元。公司致力于各类存储器、控制器及周边产品的设计研发,已通过DQSIS09001及IS014001等管理体系的认证。

3嘉兴斯达半导体股份有限公司主营业务为以IGBT为主的功率半导体芯片和模块的设计、研发、生产,并以IGBT模块形式对外实现销售。主要产品有600VIGBT模块系列,1200VIGBT模块系列,1700VIGBT模块系列,MOSFET模块系列,600VIPM模块系列等;产品可用于功率范围从05kW至1MW以上的不同领域,包括:变频器_电焊机_感应加热_激光_太阳能/风能发电装置、高压直流输变电装置、家用电器、机车牵引、UPS、医疗设备等等。

1长沙景嘉微电子股份有限公司从事高可靠军用电子产品的研发、生产和销售,主要产品为图形显控、小型专用化雷达领域的核心模块及系统级产品。公司陆续通过双软企业、三级保密资格单位、高新技术企业、武器装备质量体系等一系列资格认证,取得武器装备科研生产许可证、装备承制单位注册证书等业务资质证书。

2公司自成立以来一直致力于高可靠电子产品的研究开发,目前在图形显控领域居于国内领先地位,已同时成功研发多款具有自主知识产权的图形处理芯片,并实现规模化应用;在空中防撞雷达、主动防护雷达及弹载雷达微波射频前端等小型专用化雷达领域具有先发技术优势。深圳市汇顶科技股份有限公司主要从事智能终端、物联网及汽车电子领域提供领先的半导体软硬件解决方案。公司主要产品为电容触控芯片和指纹识别芯片,除此之外为固定电话芯片产品。

在老师们*他是骗子、“露笑科技把人整笑了”后,露笑科技也迎来大跌,跌了20%左右。

但是并没有业内人士出来说道说道这个,这就有点神奇了。

行外看热闹,非专业人士说的东西,大家要有一些判断。

现代科学的发展进步,其实已经到了普通人很难理解的程度了,不信你看看下面这个“标准模型”的公式:

要是你不懂这个标准模型的话,第三代半导体,你也就是连入门都说不上了。

量子力学认为,组成物质的原子是由原子核和电子组成的,电子以电子轨道的方式在核外运动。

原子和原子组成物体时,会有很多相同的电子混在一起,这个相混的过程就是化学反应,形成化学键,就产生了新分子。

但是两个相同的电子没法呆在一个轨道上,为了让这些电子不在一个轨道上打架,于是很多轨道就再分裂出好几个轨道。

可是这么多轨道,一不小心挨得近了,就会挤在一起,形成宽轨道,这个宽轨道,就叫做能带。

有些宽轨道上,挤满了电子,电子就没法移动,宏观上就表现为绝缘,这个就叫做价带。

而有些款轨道,则空旷的很,电子大把空间自由移动,宏观上就表现为导电,这个就叫做导带。

固体里面充满了价带和导带,价带和导带之间往往是有间隙的,这个间隙就叫做禁带。

导带和价带之间挨得很近,那么电子就可以毫不费力地从价带变更车道到导带上,这就是导体。

如果稍微离得远了点,电子自身就不能跨过禁带,但是如果也不是离得非常远,禁带在5ev内,那么给电子加个额外能量,电子也能跨过禁带,这就是半导体。

假如禁带大于5ev,那基本就歇逼菜了,电子在普通情况下是跨不过去的,这就是绝缘体。

当然,凡事都有例外嘛,如果能量足够大,别说5ev的禁带,就是5000ev的禁带也能一冲而过,这个就叫击穿场强(这个东西很重要,不信继续看下去)。

第三代半导体,严谨地来说,叫做宽禁带半导体,也就是禁带宽于现在的硅基半导体。

按照半导体材料能带结构的不同,禁带宽度如果小于23ev,那就是窄禁带半导体,代表材料有:GaAs、Si、Ge、InP(有读者可能不了解化学,这几个材料翻译成中文就是:砷化镓、硅、锗、磷化铟)。

如果禁带宽度大于23ev,那就叫做宽禁带半导体,代表材料有:GaN、SiC、AlN、AlGaN(中文名:氮化镓、碳化硅、氮化铝、氮化镓铝)。

由前文分析,我们可知,半导体禁带宽度越大,则其电子跃迁到导带需要的能量也就越大。

呵呵,那当然击穿场强也越大了,这意味着材料能承受的温度和电压更加高。

由此可知,宽禁带半导体和集成电路,也就是和逻辑芯片,没有什么太大关系了。

逻辑芯片的核心在于怎么把晶体管做小,也就是制程提高。

而电力电子器件、激光器,则是怎么考虑承受更高的电压、电流、频率、温度,然后有更小的电力损耗,以应用在各种恶劣环境和大功率环境下。

所以,宽禁带半导体大展身手的地方,在电力电子器件、激光发生器上。

目前比较有希望的两种材料是碳化硅和氮化镓,其他的长晶很困难。

碳化硅主要用在功率器件上,现在最热的就是用在电动车上,因为带来电力损耗减少,能够提高电动车的续航。

以后在光伏和风电发电中,用上碳化硅的话,也能够提高发电效率,促进度电成本下降。

所以在这么一个**家推动的电气化时代,其需求是很迫切的。

氮化镓则主要是用于微波器件上,比如5G基站的射频芯片就要用到它,否则效果就比较差。

特别是军方的电磁对抗,更加需要氮化镓,来增加单位微波功率。

国内的话,研究宽禁带半导体主要有3个流派,中科院物理所、中科院上海硅酸盐所、山东大学,最主要的研究方向就是宽禁带半导体衬底的晶体生长。

因为这个行业最源头的,以及最难的,就是衬底片的制造。

就像硅基的半导体,要是没有硅片,那做毛个芯片呢?

这三个流派都是90年代开始就开启研究了,起步时间和国外是差不太多的,读者有兴趣可以自行搜索下他们的论文。

中科院物理所是陈小龙领头,成立产学研转化的企业是天科合达。

天科合达的金主是**生产建设兵团,控股方是天富集团,A股的影子股是天富集团控股的天富能源,占了1066%的股份。

山东大学是徐现刚领头,产学研的企业是山东天岳。

原本的领头人是徐现刚的老师蒋民华院士,遗憾的是这位大佬不幸于2011年逝世,事未竟而身先死,科学真的是烧人的事业啊。

山东天岳前段时间参加了上市辅导,相信很快就会跟大家在A股见面。

大家对他的热情也是非常高涨啊,穿透下来只有他股权2%的柘中股份都被资金顶了7个板。

陈之战之前在世纪金光干过,后来20年5月份,和露笑科技走在了一起。

涨了一倍之后,前几天就出来自媒体的老师们在微信公众号、抖音等平台出来说,这是家蹭热点的骗子公司。

对比大家一定要有自己的判断,要知道这些老师并不是业内人士,很有可能不懂技术,只是翻了一下二手资料。

露笑科技曾经追逐热点,投资的锂电池、光伏也都失败了。

但是并不能以此推导出他的管理层就是坏家伙。

露笑科技原来的主营业务漆包线,是人都知道的传统行业,竞争激烈,管理层当然也知道这是没有什么前途的。

谋取转型,某种程度上说明管理层是有进取心的。

但转型是困难的,踏足一个未知领域,哪有这么简单。

而做一级投资的都知道,热门行业的好项目,是拼爹的玩意儿,要各种关系、资源的,那个东西是你手上有钱就能投的进去的吗?

但是如果没有投到厉害的公司身上,那大概率是要被有爹的给干死的。

在低潮期捡漏,像高瓴投腾讯、段永平投网易,都是高难度动作,传奇故事,需要天时地利人和来配合,这种机会不仅是少,而且非常难把握。

碳化硅这个东西嘛,以往并不是很热,因为商业化应用的领域没有出来。

陈小龙在媒体采访时就曾经透露到,天科合达在成立后的10多年里未曾盈利,给投资方和团队都带来了非常大的压力。

而美国军方扶持起来的CREE,就算有军方爸爸,但是在2016年的时候也顶不住,想要把企业卖给英飞凌。

而电动车领域里,就在2020年,特别疫情期间,大家还怀疑,补贴退坡之后,会不会就面临死亡了。

当时还有人专门写了《预言一场电动爹大逃杀》来看空呢。

那你们想想,碳化硅器件目前最好的应用场景,在去年都还是这个熊样,谁又会多留意碳化硅呢?

当时的大热门还是功率器件的国产替代,是硅基的IGBT、MOSFET,是斯达半导体、新洁能。

所以20年露笑科技找到陈之战,或许和以往的投资,有些不同吧。

国内碳化硅衬底还*限在二极管的应用,芯片质量主要来自于衬底,也因此几乎国内SiC器件都来自国外。

目前碳化硅四寸片,做的比较好的是天科合达、河北同光以及山西烁科等几家企业。

但是六寸量产(每个月稳定出货量在几百片)的厂商,目前还基本没有。

也就是说,三大流派其实还是半斤八两,都还需要突破,否则华为怎么对天科合达和山东天岳都一起投资呢?

当下这个阶段就是,谁能率先突破,谁就会享有先发优势,并在行业景气的助力下,实现超额收益,获得市场的估值溢价。

或许当合肥露笑半导体的碳化硅衬底片出来后,华为也会进来投资一笔呢。

至于说露笑科技没有技术积累,这真不知道怎么说,陈之战大哥和他的团队、学生已经研究了20多年了。

很可能是,露笑科技的蓝宝石业务部门,19年在给中科钢研代工碳化硅长晶炉的时候,突然发觉这是个有戏的行业,随后才找到了陈之战。

总之,对于露笑科技,大家要有自己的判断,核心点有且只有一个,陈之战团队能不能扎下根来。

君临认为,目前碳化硅的投资,最好的应该是衬底环节,这个环节现在产能不足、壁垒极高。

而衬底的企业,则主要是看已经研究了20多年的国内三大流派旗下企业。

按照中国的科研环境、功率器件企业发展状况来说,其他的团队压根没法分杯羹。

现在行业热了再来开始研发,短时间根本不可能见效。

中科院的两个研究所,山东大学蒋院士的团队,科研的资源肯定是最丰富的,但是人家陈小龙都说压力很大,所以别的团队申请科研基金都不容易。

露笑科技说9月份能试生产,年底批量生产,而且是6英寸的,有陈之战在,应该不是讲大话。

一旦衬底片年底真的量产了,那就是国内领先了,以国内资金对科技的热度,自然会有神秘的东方估值力量。

宽禁带半导体领域里,全球都还是在懵懵懂懂的阶段,咱们和美国虽然有差距,但也不是这么大。

特别是他的主要应用领域,新能源发电、新能源汽车、5G通讯、航空航天、电磁对抗,咱们国家都是最大的应用市场和制造商,特别是光伏、风电、电动车、5G这些大规模民用的领域。

技术的进步还是源自经济利益的驱使,产业的需求对于技术进步的作用是最大的。

所以宽禁带半导体的投资在目前是大有可为,很有可能在我们国家诞生全球龙头,这个想象空间大不大?

至于氮化镓等材料,以及外延、器件设计制造等环节,行业本就是新兴的,肯定也是有大机会的,君临会在后续的跟踪文章中持续输出,带领读者彻底搞定这个领域。

以上就是关于第三代半导体SIC行业投资机会分析:10年20倍成长全部的内容,包括:第三代半导体SIC行业投资机会分析:10年20倍成长、半导体分类、风电股票有哪些等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

第三代半导体SIC行业投资机会分析:10年20倍成长由网友发布在比玩财富网,更多内容请关注我们,也可查看其他相关内容。

晶振详细介绍及其知名研发、生产厂家

晶振,在板子上看上去一个不起眼的小器件,但是在数字电路里,就像是整个电路的心脏。数字电路的所有工作都离不开时钟,晶振的好坏,晶振电路设计的好坏,会影响到整个系统的稳定性。所以说晶振是智能硬件的“心脏”。

每个单片机系统里都有晶振(晶体震荡器),在单片机系统里晶振的作用非常大,他结合单片机内部的电路,产生单片机所必须的时钟频率,单片机的一切指令的执行都是建立在这个基础上的,晶振的提供的时钟频率越高,那单片机的运行速度也就越快。

复杂的电子产品,晶振是必须的,而RC或LC振荡无法企及,原因就是信号的稳定性不够,而晶振的三种切型:AT切,SC切和X切,把石英按照一定的角度切成薄片,而根据其厚度就可以给出一定的频率信号,根据需要可以任意设计频率值。

石英晶体俗称水晶,成分SiO2,它不仅是较好的光学材料,而且是重要的压电材料。晶体的主要特征是其原子或分子有规律排列,反映在宏观上是外形的对称性。人造水晶在高温高压下结晶而成。在电场的作用下,晶体内部产生应力而形变,从而产生机械振动,获得特定的频率。我们利用它的这种逆压电效应特性来制造石英晶体谐振器。

1、从外观上可以划分为:圆柱晶振(DIP)、贴片晶振(SMD)。

谐振器一般分为插件(Dip)和贴片(SMD)。插件中又分为HC-49U、HC-49U/S、音叉型(圆柱)。HC-49U一般称49U,有些采购俗称“高型”,而HC-49U/S一般称49S,俗称“矮型”。音叉型按照体积分可分为3*8,2*6,1*5,1*4等等。贴片型是按大小和脚位来分类。例如7*5(0705)、6*3.5(0603),5*3.2(5032)等等。脚位有4pin和2pin之分。

而振荡器也是可以分为插件和贴片。插件的可以按大小和脚位来分。例如所谓全尺寸的,又称长方形或者14pin,半尺寸的又称为正方形或者8pin。不过要注意的是,这里的14pin和8pin都是指振荡器内部核心IC的脚位数,振荡器本身是4pin。而从不同的应用层面来分,又可分为OSC(普通钟振),TCXO(温度补偿),VCXO(压控),OCXO(恒温)等等。

2、从工作性能上分为:石英晶体谐振器(无源)、石英晶体震荡器(有源,带电压的。晶体振荡器又可分为Package石英振荡器(SPXO)、温度补偿石英振荡器(TCXO)、电压控制石英振荡器(VCXO)、恒温槽式石英振荡器(OCXO))。

①无源晶体——无源晶体需要用DSP片内的振荡器,在datasheet上有建议的连接方法。无源晶体没有电压的问题,信号电平是可变的,也就是说是根据起振电路来决定的,同样的晶体可以适用于多种电压,可用于多种不同时钟信号电压要求的DSP,而且价格通常也较低,因此对于一般的应用如果条件许可建议用晶体,这尤其适合于产品线丰富批量大的生产者。无源晶体相对于晶振而言其缺陷是信号质量较差,通常需要精确匹配外围电路(用于信号匹配的电容、电感、电阻等更换不同频率的晶体时周边配置电路需要做相应的调整。建议采用精度较高的石英晶体,尽可能不要采用精度低的陶瓷警惕。

②有源晶振——有源晶振不需要DSP的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源滤波,通常使用一个电容和电感构成的PI型滤波网络,输出端用一个小阻值的电阻过滤信号即可),不需要复杂的配置电路。有源晶振通常的用法:一脚悬空,二脚接地,三脚接输出,四脚接电压。相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,而且价格高。对于时序要求敏感的应用,个人认为还是有源的晶振好,因为可以选用比较精密的晶振,甚至是高档的温度补偿晶振。有些DSP内部没有起振电路,只能使用有源的晶振,如TI的6000系列等。有源晶振相比于无源晶体通常体积较大,但现在许多有源晶振是表贴的,体积和晶体相当,有的甚至比许多晶体还要小。有源晶振逐步演变为市场主流。

有源晶振的主要参数:

1)、总频差:在规定的时间内,由于规定的工作和非工作参数全部组合而引起的晶体振荡器频率与给定标称频率的最大偏差。

2)、率压控线性:与理想(直线)函数相比的输出频率-输入控制电压传输特性的一种量度,它以百分数表示整个范围频偏的可容许非线性度。

3)、频率温度稳定度:在标称电源和负载下,工作在规定温度范围内的不带隐含基准温度或带隐含基准温度的最大允许频偏。

4)、频率老化率:在恒定的环境条件下测量振荡器频率时,振荡器频率和时间之间的关系。这种长期频率漂移是由晶体元件和振荡器元件的缓慢变化造成的。因此,其频率偏移的速率叫老化率,可用规定时限后的最大变化率(如±10ppb/天,加电72小时后),或规定的时限内最大的总频率变化(如:±1ppm/(第一年)和±5ppm/(十年))来表示。

5)、开机特性(频率稳定预热时间):指开机后一段时间(如5分钟)的频率到开机后另一段时间(如1小时)的频率的变化率,表示了晶振达到稳定的速度。

我们知道了这些内容后,又听到别人说过陶瓷晶振,那么相比石英晶振总会有所不同了吧,这是当然的啦!

陶瓷谐振器多用在电视,DVD摇控,玩具产品等精度要求不高的产品中,而对于精度要求较高的电子仪器仪表,通信通讯等消费电子产品中,就需要石英谐振器了,而且根据不同的需要,调整频差也要求不一。而且,晶振现在是越做越小,业内现在也只做3225的晶振,而于更小型化的2025,暂时还没有出现,这是一个方向。早晚都会出来的。

在现实生活中,手机蓝牙一般用4025或503213MHZ或26MHZ的帖片晶体振荡器;而MP3,U盘大多用503212.000MHz的帖片晶体;对于视频采集卡或GPS用的就更加精准一些。例如:SMDTCXO19.2MHZ或38.4MHZ,最后通信通讯用25.000MHZ的帖片晶体。

1、标称频率:晶振是一种频率元器件,每一款晶振都有自己的频率。频率通常会标识在产品外壳上,进口晶振品牌则会有品牌的logo标识又或字母代替。

2、温度频差:在规定条件下,在工作温度范围内相对于基准温度(25±2℃)时工作频率的允许偏差。

3、工作频率:晶体与工作电路共同产生的频率。

4、调整频差:在规定条件下,基准温度(25±2℃)时工作频率相对于标称频率所允许的偏差。

5、负载谐振频率(fL):在规定条件下,晶体与一负载电容相串联或相并联,其组合阻抗呈现为电阻性时的两个频率中的一个频率.在串联负载电容时,负载谐振频率是两个频率中较低的一个,在并联负载电容时,则是两个频率中较高的一个。

6、动态电阻:串联谐振频率下的等效电阻。用R1表示。

7、负载谐振电阻:在负载谐振频率时呈现的等效电阻。用RL表示.RL=R1(1+C0/CL)2

8、激励电平:晶体工作时所消耗功率的表征值。激励电平可选值有:2mW、1mW、0.5mW、0.2mW、0.1mW、50μW、20μW、10μW、1μW、0.1μW等。

9、基频:在振动模式最低阶次的振动频率。

10、老化率:在规定条件下,晶体工作频率随时间而允许的相对变化。以年为时间单位衡量时称为年老化率。

11、静电容:等效电路中与串联臂并接的电容,也叫并电容,通常用C0表示。

12、负载电容:与晶体一起决定负载谐振频率fL的有效外界电容,通常用CL表示。负载电容系列是:8PF、12PF、15PF、20PF、30PF、50PF、100P。只要可能就应选推荐值:10PF、20PF、30PF、50PF、100PF。32.768K晶振常用的负载电容为12.5PF,6PF,9PF等。

13、泛音:晶体振动的机械谐波。泛音频率与基频频率之比接近整数倍但不是整数倍,这是它与电气谐波的主要区别。泛音振动有3次泛音,5次泛音,7次泛音,9次泛音等。

晶振的精度单位是(PPM)不仅是决定了晶振的价格,也决定了是否符合你产品的技术参数。一般常用的精度为20PPM。那么影响晶振精度的因素有哪些呢?

尽管一个石英晶体振荡器的频率精度是正负20PPM,但可能会因为电压变动有正负10PPM的影响,焊接温度有正负5PPM的影响,机械振动与冲击有正负3PPM的影响,温度范围可能有正负5-20PPM的影响等等。

这些都十分常见的影响精度的因素,必须考虑进去,单石英晶体振荡器厂商却只告诉客户产品的精度是正负20PPM。事实上,实际应用环境中精度可能只能达到50PPM。因此,客户需要50PPM精度的时候,选择了20PPM的石英晶体振荡器是正确的。

晶体振荡器有多种封装,特点是电气性能规范多种多样。它有好几种不同的类型:电压控制晶体振荡器(VCXO)、温度补偿晶体振荡器(TCXO)、恒温晶体振荡器(OCXO),以及数字补偿晶体振荡器(MCXO或DTCXO),每种类型都有自己的独特性能。如果需要使设备即开即用,您就必须选用VCXO或温补晶振,如果要求稳定度在0.5ppm以上,则需选择数字温补晶振(MCXO)。模拟温补晶振适用于稳定度要求在5ppm~0.5ppm之间的需求。VCXO只适合于稳定度要求在5ppm以下的产品。在不需要即开即用的环境下,如果需要信号稳定度超过0.1ppm的,可选用OCXO。

晶体振荡器的主要特性之一是工作温度内的稳定性,它是决定振荡器价格的重要因素。稳定性愈高或温度范围愈宽,器件的价格亦愈高。工业级标准规定的-40~+75℃这个范围往往只是出于设计者们的习惯,倘若-30~+70℃已经够用,那么就不必去追求更宽的温度范围。设计工程师要慎密决定特定应用的实际需要,然后规定振荡器的稳定度。指标过高意味着花钱愈多。晶体老化是造成频率变化的又一重要因素。根据目标产品的预期寿命不同,有多种方法可以减弱这种影响。晶体老化会使输出频率按照对数曲线发生变化,也就是说在产品使用的第一年,这种现象才最为显著。例如,使用10年以上的晶体,其老化速度大约是第一年的3倍。采用特殊的晶体加工工艺可以改善这种情况,也可以采用调节的办法解决,比如,可以在控制引脚上施加电压(即增加电压控制功能)等。

与稳定度有关的其他因素还包括电源电压、负载变化、相位噪声和抖动,这些指标应该规定出来。对于工业产品,有时还需要提出振动、冲击方面的指标,军用品和宇航设备的要求往往更多,比如压力变化时的容差、受辐射时的容差,等等。

必须考虑的其它参数是输出类型、相位噪声、抖动、电压特性、负载特性、功耗、封装形式,对于工业产品,有时还要考虑冲击和振动、以及电磁干扰(EMI)。晶体振荡器可HCMOS/TTL兼容、ACMOS兼容、ECL和正弦波输出。每种输出类型都有它的独特波形特性和用途。应该关注三态或互补输出的要求。对称性、上升和下降时间以及逻辑电平对某些应用来说也要作出规定。许多DSP和通信芯片组往往需要严格的对称性(45%至55%)和快速的上升和下降时间(小于5ns)。相位噪声和抖动:在频域测量获得的相位噪声是短期稳定度的真实量度。它可测量到中心频率的1Hz之内和通常测量到1MHz。晶体振荡器的相位噪声在远离中心频率的频率下有所改善。TCXO和OCXO振荡器以及其它利用基波或谐波方式的晶体振荡器具有最好的相位噪声性能。采用锁相环合成器产生输出频率的振荡器比采用非锁相环技术的振荡器一般呈现较差的相位噪声性能。

抖动与相位噪声相关,但是它在时域下测量。以微微秒表示的抖动可用有效值或峰—峰值测出。许多应用,例如通信网络、无线数据传输、ATM和SONET要求必须满足严格的拌动指标。需要密切注意在这些系统中应用的振荡器的抖动和相位噪声特性。

电源和负载的影响:振荡器的频率稳定性亦受到振荡器电源电压变动以及振荡器负载变动的影响。正确选择振荡器可将这些影响减到最少。设计者应在建议的电源电压容差和负载下检验振荡器的性能。不能期望只能额定驱动15pF的振荡器在驱动50pF时会有好的表现。在超过建议的电源电压下工作的振荡器亦会呈现较差的波形和稳定性。对于需要电池供电的器件,一定要考虑功耗。引入3.3V的产品必然要开发在3.3V下工作的振荡器。较低的电压允许产品在低功率下运行。大部分市售的表面贴装振荡器在3.3V下工作。许多采用传统5V器件的穿孔式振荡器正在重新设计,以便3.3V下工作。

与其它电子元件相似,时钟振荡器亦采用愈来愈小型的封装。根据客户的需要制作各种类型、不同尺寸的晶体振荡器(具体资料请参看产品手册)。通常,较小型的器件比较大型的表面贴装或穿孔封装器件更昂贵。所以,小型封装往往要在性能、输出选择和频率选择之间作出折衷。

晶体振荡器实际应用的环境需要慎重考虑。例如,高强度的振动或冲击会给振荡器带来问题。除了可能产生物理损坏,振动或冲击可在某些频率下引起错误的动作。这些外部感应的扰动会产生频率跳动、增加噪声份量以及间歇性振荡器失效。对于要求特殊EMI兼容的应用,EMI是另一个要优先考虑的问题。除了采用合适的PC母板布*技术,重要的是选择可提供辐射量最小的时钟振荡器。一般来说,具有较慢上升/下降时间的振荡器呈现较好的EMI特性。

对于晶振的检测,通常仅能用示波器(需要通过电路板给予加电)或频率计实现。万用表或其它测试仪等是无法测量的。如果没有条件或没有办法判断其好坏时,那只能采用代换法了,这也是行之有效的。

晶振常见的故障有:(a)内部漏电;(b)内部开路;(c)变质频偏;(d)与其相连的外围电容漏电。从这些故障看,使用万用表的高阻档和测试仪的Ⅵ曲线功能应能检查出(C),(D)项的故障,但这将取决于它的损坏程度。

总结:器件选型时一般都要留出一些余量,以保证产品的可靠性。选用较高档的器件可以进一步降低失效概率,带来潜在的效益,这一点在比较产品价格的时候也要考虑到。要使振荡器的“整体性能”趋于平衡、合理,这就需要权衡诸如稳定度、工作温度范围、晶体老化效应、相位噪声、成本等多方面因素,这里的成本不仅仅包含器件的价格,而且包含产品全寿命的使用成本。

电子行业的朋友们都知道:32.768K晶振在钟表里面必不可少被称为表晶。近年来整个晶体行业也在不断随着市场需求的改变而变化。最明显的就是晶振尺寸的变化,如图我们可以看到近年来晶体体积的变化趋势。

从该图中可以看出如今市场主流的是超小超薄型贴片晶振。小型贴片石英晶振,外观尺寸具有薄型表面贴片型石英晶体谐振器,特别适用于有小型化要求的市场领域,晶振本身超小型,薄型,重量轻,晶体具有优良的耐环境特性,如耐热性,耐冲击性,在办公自动化,家电相关电器领域及Bluetooth,WirelessLAN等短距离无线通信领域可发挥优良的电气特性,满足无铅焊接的回流温度曲线要求。

一般民用产品使用的是普通晶体谐振器,由于一些高端智能产品对晶振的要求更加严格,使用的是振荡器。振荡器的优势:快速启动,低电压工作,低电平驱动和低电流消耗已成为一个趋势,电源电压一般为3.3V。许多TCXO和VCXO产品,电流损耗不超过2mA。石英晶体振荡器的快速启动技术也取得突破性进展。

晶振的应用非常广泛,常用于:智能手机、平板电脑、蓝牙、数码产品、LED显示屏、通讯设备、安防产品、数码科技、汽车电子、智能机器人、医疗设备、无人机以及高端的航空领域等。还被广泛应用到军、民用通信电台,微波通信设备,程控电话交换机,无线电综合测试仪,BP机、移动电话发射台,高档频率计数器、GPS、卫星通信、遥控移动设备等等。90%的电子设备中都有用到晶振,它是是电子产品里面的“小心脏”。

应用于不同的产品要求都有所不同,晶体行业在几年来也在随着各种智能产品的横空出世不但地发生改变,以满足电子行业的市场需求,从以前的大体积插件转变为如今的超小超薄型贴片晶体,精度越来越小,使产品变得更加稳定。

电脑:

电脑里面用到一款49S贴片晶振。当我们电脑启动的时候就需要晶体的频率传送命令从最初的开机动作开始。电脑里面还使用到了一款圆柱32.768KHZ晶振,是显示时间的作用。

相机:

相机里面有用到插件晶振32.768K和贴片晶振5032的12M,开机需要晶振来传达这个命令使其开机,我们拍摄时需要晶振来输送这个信号,才能够使他正常工作。

智能家居:

包括空调、灯、窗帘、安防、监控等等产品,都需要无线传输模块,它们通过蓝牙、WIFI或者是ZIGBEE等协议,将模块从一端发到另一端,或者通过手机控制。一般来说,智能硬件产品都需要进行数据传输,少不了无线传输模块,而晶振,在无线模块里是非常核心的元件。将晶振放置在模块里,应用在实际产品中,这些产品才有了智能化的可能。目前晶振产品不断再往智能硬件方向研制,往贴片化、小尺寸方向发展。平常一般的家电,加上一个模块,变成了一个智能家居,通过手机或是APP管理,就变成了智能化。例如一个2。4G的模块,再加上晶振,在加上一些软件的团队,就可以把这个东西做出来。如今晶振不断实现从大尺寸到小尺寸的精细化发展,与智能硬件产品相匹配。随着智能硬件的广泛普及,晶振行业将迎来一个更大的市场发展空间,更的发展前景。

物联网:

物联网是一门复杂的应用技术,它所涵盖的范围很广,它不仅涵盖了微波技术与电磁学理论,而且还涉及到了无限通信原理以及半导体集成电路技术,是一项集多学科融合的新兴应用技术。而在无线通信原理应用中,有一款晶振是比较重要的,那就是3.2*2.5尺寸的24Mhz石英晶体谐振器,其主要作用便是起到发送和接受频率信号。因此,它为石英晶振带来的第一大机遇,随着物联网发展,石英晶振也变成了热门的产品。

白色家电:

家里常用的白色家电无外乎,电饭煲、电磁炉、榨汁机和微波炉等等,这些无一例外都存在加热的功能,而这些家电在使用单片机MCU控制的时候,必须要在线路中加上晶振—压电石英晶振或者压电陶瓷晶振,在单片机计算时提供一个稳定的频率,再根据单片机的指令实现每个按键对应的功能。

一般的消费类电子应用的单片机,对晶振要求的精度不严的时候,会采用压电陶瓷晶振如:ZTA4.0MG,4.000MHz按照千分比的精度换算为频差是12KHz,一般的单片是可以正常工作的。

LED显示屏:

LED显示屏里面需要应用到32。768K圆柱晶体以及一款石英贴片晶体。32。768K在其中主要是起着显示的作用,32。768K是晶体的一种频率,当然这种频率同时被称为“表晶”主要是显示时间的作用,通常应用于所有与时间系统有关的产品。贴片晶振主要是为产品提供稳定频率的作用。所以说LED的大是离不开晶振的支撑。

汽车电子:车载用晶振从插脚型产品8045-5032-3225和小型化转变。这是由于晶体产品整体的包装都在往小型化方向转变。加上汽车特殊的高温动作(+-150℃)的要求,对提高焊接裂纹耐性等的要求也提高了。特别是为了提高ECU的处理性能,动作频率趋于高频化,可以遇见小型话的需要将更加激烈。车载用电子元器件中。

村田制作所以将满足这些要求的车载用晶振产品化,车载用晶振是以CERALOCK的包装为基本构造,在内部安装了晶片的新产品,满足了CERALOCK所达不到的高频率、高精度的要求,主要特征是:

1、彻底防止灰尘颗粒的制造工艺

3、实现了和现有的大尺寸晶体同等特性的小型尺寸

安防:49SMD和49S是目前非常成熟,国内生产稳定的晶体,在安防产品的兴起,需求不断加大。

1、安防类主要用到的频率为:13.560MHz,24.000MHz,12.270MHz,17.3744MHz,18.9375MHz,28.375MHz,37.875MHz,38.13986MHz

2、对讲机主要用到的频率为:21.400MHz,21.7000MHz。同时还应用到门禁系统、可视电话/对讲门、小区智能化控制系统等……

1、为什么51单片机爱用11.0592MHZ晶振?

其一:因为它能够准确地划分成时钟频率,与UART(通用异步接收器/发送器)量常见的波特率相关。特别是较高的波特率(19600,19200),不管多么古怪的值,这些晶振都是准确,常被使用的。

其二:用11.0592晶振的原因是51单片机的定时器导致的。用51单片机的定时器做波特率发生器时,如果用11.0592Mhz的晶振,根据公式算下来需要定时器设置的值都是整数;如果用12Mhz晶振,则波特率都是有偏差的,比如9600,用定时器取0XFD,实际波特率10000,一般波特率偏差在4%左右都是可以的,所以也还能用STC90C516晶振12M波特率9600,倍数时误差率6.99%,不倍数时误差率8.51%,数据肯定会出错。这也就是串口通信时大家喜欢用11.0592MHz晶振的原因,在波特率倍速时,最高可达到57600,误差率0.00%。用12MHz,最高也就4800,而且有0.16%误差率,但在允许范围,所以没多大影响。

2、在设计51单片机系统PCB时,晶振为何被要求紧挨着单片机?

原因如下:晶振是通过电激励来产生固定频率的机械振动,而振动又会产生电流反馈给电路,电路接到反馈后进行信号放大,再次用放大的电信号来激励晶振机械振动,晶振再将振动产生的电流反馈给电路,如此这般。当电路中的激励电信号和晶振的标称频率相同时,电路就能输出信号强大,频率稳定的正弦波。整形电路再将正弦波变成方波送到数字电路中供其使用。

问题在于晶振的输出能力有限,它仅仅输出以毫瓦为单位的电能量。在IC(集成电路)内部,通过放大器将这个信号放大几百倍甚至上千倍才能正常使用。

晶振和IC间一般是通过铜走线相连的,这根走线可以看成一段导线或数段导线,导线在切割磁力线的时候会产生电流,导线越长,产生的电流越强。现实中,磁力线不常见,电磁波却到处都是,例如:无线广播发射、电视塔发射、手机通讯等等。晶振和IC之间的连线就变成了接收天线,它越长,接收的信号就越强,产生的电能量就越强,直到接收到的电信号强度超过或接近晶振产生的信号强度时,IC内的放大电路输出的将不再是固定频率的方波了,而是乱七八糟的信号,导致数字电路无法同步工作而出错。

所以,画PCB(电路板)的时候,晶振离它的放大电路(IC管脚)越近越好。

遇到单片机晶振不起振是常见现象,那么引起晶振不起振的原因有哪些呢?

①PCB板布线错误;②单片机质量有问题;③晶振质量有问题;

④负载电容或匹配电容与晶振不匹配或者电容质量有问题;⑤PCB板受潮,导致阻抗失配而不能起振;⑥晶振电路的走线过长;

解决方案,建议按如下方法逐个排除故障:

①排除电路错误的可能性,因此可以用相应型号单片机的推荐电路进行比较。②排除外围元件不良的可能性,因为外围零件无非为电阻,电容,很容易鉴别是否为良品。③排除晶振为停振品的可能性,因为不会只试了一二个晶振。④试着改换晶体两端的电容,也许晶振就能起振了,电容的大小请参考晶振的使用说明。⑤在PCB布线时晶振电路的走线应尽量短且尽可能靠近IC,杜绝在晶振两脚间走线。

4、51单片机时钟电路用12MHZ的晶振时那电容的值是怎样得出来的?拿内部时钟电路来说明吧!

其实这两个电容没人能够解释清楚到底怎么选值,因为22pF实在是太小了。这个要说只能说和内部的振荡电路自身特性有关系,搭配使用,用来校正波形,没有人去深究它到底为什么就是这么大的值。

5、单片机晶振电路中两个微调电容不对称会怎样?相差多少会使频率怎样变化?在检测无线鼠标的接受模块时,发现其频率总是慢慢变化(就是一直不松探头的手,发现频率慢慢变小)晶振是新的!

电容不对称也不会引起频率的漂移,说的频率漂移可能是因为晶振的电容的容量很不稳定引起的,可以换了试,换两电容不难,要不就是的晶振的稳定性太差了,或者测量的方法有问题.

6、单片机晶振与速度的疑问,执行一条指令的周期不是由晶振决定的吗。那么比如51单片机和MSP430,给51接高速晶振,430接低速的,是不是51跑的要快?是不是速度单片机速度仅仅与晶振有关,关键是单片机能不能支持那么大的晶振?

每个单片机的速度是受到内部逻辑门电平跳变速度限制的。两个芯片同时使用同样的晶振,比如12M的。因为AVR是RISC指令集,它在同样外部晶振频率下,比51要快。

STC89C52大都用12MHz晶振,但由于其12个时钟周期才是一个机器周期,相当于其主频只有1MHz。

MSP430采用RISC精简指令集,430单片机若采用内部DCO震荡可达21MHz主频。单个时钟周期就可以执行一条指令,相同晶振,速度较51快12倍。

对于一个51,给他用更高的晶振,速度会快些。但是对于高级的单片机就不一样了。高级单片机内部,一般都是有频率控制寄存器的,所以,简单的增加晶振,可能达到单片机的极限,导致跑飞。

7、请问:有什么方法可以确定某一款单片机在某一大小的晶振下是否能正常工作?

晶振选择太高不太合适,具体晶振上限是多少,恐怕测不出来,只能按照人家单片机的要求,一般STC系列单片机上限是35M或40M,stc单凭上写的有,如STC11F16XE35I-LQFP44G其中35I就是晶振最高35M的工业级芯片。

超过上限会出现什么样的问题,没有测试过,一般晶振选择12M的比较多,如果选择STC1T指令的,就相当于12*12=144M的晶振。如果用于串口通信,建议选用11.0592M的或22.184M,选择晶振最主要还是参照人家的说明书。

8、4个AT89C51单片机能否用一个12M的晶振使其都正常工作?一个采用内部时钟方式,其余三个用外部方式...那四个都用内部方式可以不(将4个单片机都并联在一个晶振上)?

可以,其中一个正常接晶振,他的XTAL2输出接到另外三个的XTAL1输入上。

9、单片机的运行速度和晶振大小的关系,若单片机的最高工作频率是40M,晶振是否可以选择24M或更高,但不超过40M,这样单片机的运行速度是否大增?长期在此工作频率下对单片机是否有不良影响?单片机对晶振的选择的原则是怎样的?

当然是有影响的,单片机的工作速度越快,功耗也越大,受干扰也会越厉害,总之最高能跑40M的,跑不超过40M的是没有问题的,只是对相关的技术(如PCB的设计元件的选取等)会高去很多.

10、89c51单片机的复位电路中常采用12MHZ的晶振,实际上市场上稍小于12MHZ,为什么呢?

答:需要串口通讯时一般是用11.0582MHZ的,这样波特率才好算。

11、单片机晶振上电不起振,但是手碰一下晶振就起振了,为什么?怎么判断单片机晶振是否起振呀?

最简单是用示波器,另外可以看一下电源是否正常。

12、怎样判断单片机外部晶振有没有起振?的STC89C52单片机本来是好好的后来不行了,换了个晶振就好了。但是过了几个小时后又不行了,是怎么回事。还有就是怎样判断晶振是否起振?

①先换一块单片机试试,问题还在则排除单片机;②可能是虚焊造成的,这点要注意;③用STC89C52也碰到过类似的问题,换了块晶振就OK了,好像STC起振不橡AT89S52那么顺。其实对于STC89C52可以直接看30脚(ALE),接个灯,起振一下子就能看出来了。

13、51单片机晶振上接的电容大小该如何选择?是晶振越大,电容值也要大一些吗,一般常用多大的。有人说常用的从15-33pf,具体如何选择效果最好?比如分别用一个6M和12M的晶振,用多大电容更合适?

15-33pf都可以,一般用的是15P和30P,晶振大小影响不大,常用的4M和12M以及11.0592M和20M、24M。30P单片机内部有相应的整形电路不必担心。

没有内部晶振的单片机,外部晶振可以起振,如传统类MS51系列单片机有内部晶振的单片机,外部晶振不会起振,需要对外部晶振进行配置后才会起振,如果不对外部晶振进行配置仍使用内部晶振,如siliconlab系列C8051F020单片机。

15、为什么at89c52P1.0输出2.5v电压,单片机好像未工作,晶振波形是不规则的正弦波可不可以?线路板没有达到预想效果,发光二极管一直亮,感觉还是单片机的问题,P1.0输出2.5v电压,看门狗用的X5045。怎么回事?

将看门狗拿掉,暂时做成最小系统,既只有电源、8952、晶振和两只30P左右的电容。

①将P1.0口置1,测试该口的电压是否在2.5V以上;

②将P1.0口置0,测试改口电压是否约为0V。

是的话就是OK的,否则就要看看电源电压、晶振、8952了。电源电压是5+、-0.25V,且纹波一定要小

16、制作max232下载单片机,工作电压都正常,要外加晶振嘛?

当然要加,如果没有外加晶振,那么单片机的时钟电路就没有了,导致单片机串口就不能进行数据传输了,最终这个下载器具就不能下载程序了。

晶振的两个管脚各接一个20~30pf的电容后分别接入单片机的XTAL1和XTAL2,两个电容的另一端并接后接地即可,不再需要任何设置

18、晶振的原理,如何产生正弦信号的,详细一点,从电路方面分析?

晶体可以等效为一个电感,与里面的电容形成振荡回路,能量从电感慢慢到电容,再从电容慢慢到电感,周而复始形成振荡。正半周是电容的充放电过程,负半周是电感的充放电过程。

19、现在要用52单片机做一个交通灯电路。要求是红灯,绿灯30s,黄灯3s。循环变化。那么外界晶振怎样选择?单指令周期多少比较合适?图中外接的两个电容的作用是什么?大小多少合适?

如果选择晶振的话,那两个电容值可以选择:30加减10PF左右的(频率在0~33MHZ之间);

如果选择陶瓷晶振的话,电容值可以选择:40加减10PF左右的(频率在1.2~12MHZ)振荡器应尽量靠近电容。指令周期是可以算的,这个是有公式的!

20、89c52单片机晶振频率才12兆,太小了,怎样能改大晶振频率?

外接18.432或者24MHz的晶振。或者换4T的W77E58单片机,这样相当于把工作频率提高3倍。或者换1T的DS89C4XX单片机,这相当于把工作频率提高8倍!用1T的STC12C5A60S2单片机也有这样的效果。

21、单片机不能正常工作,晶振问题?如何去检查晶振正常还是不正常?另外看到说晶振跟两个小电容要离得很近,几乎都没剪引脚(就是买回来多长就多长)就插上去了,这个也有关系吗?

用万用表测量单片机连接晶振的两个引脚,正常起振的状态下电压大概比供电电压的1/2略低一些,如果其中一个或全部引脚为电源电压或零就表明没起振。那个引脚长些一般不会有什么影响,相比之下接地更关键些,两个谐振电容接地端到单片机的电源地要尽量近些。

22.给51单片机12M晶振接2200pF电容会怎么样?电路图里貌似是22pF的,但是没有22pF的...接2200pF会不会不正常工作?

不可以,晶体会不工作的。15-33p是合理范围。可以试试看,对单片机不会有损坏。

部分资料来源于:晶鹏达

目前我国也出现了大批晶振厂家,引进了国外的先进生产设备,实现了自主研发、生产。

总部:日本

主营:石英晶体、高温多晶硅

官网:

总部:日本

主营:晶体振荡器、声表面波滤波器等表面安装式陶瓷封装

官网:

总部:日本

主营:晶体谐振器、钟用晶体振荡器、声表面波器件等

官网:/cn

总部:日本

主营:晶振、晶体谐振器、晶体光学部件

官网:

总部:日本

主营:钟用晶体振荡器

官网:

总部:日本

主营:石英晶体

官网:

总部:日本

主营:晶体、晶振

官网:

总部:日本

主营:陶瓷振荡器、石英晶体振荡器

官网:

总部:台湾

主营:石英晶体谐振器及振荡器

官网:

总部:台湾

主营:石英晶体、晶体振荡器

官网:

总部:台湾

主营:专业从事频率控制元件生产和销售的企业,跻身于世界石英频率元器件产业前列。

官网:

总部:台湾

主营:表面声波元件、石英晶体元器件等

官网:

总部:台湾

主营:人工水晶、石英晶体、晶体振荡器、滤波器等

官网:

总部:台湾

主营:石英振荡器、压控/温补石英振荡器

官网:

总部:台湾

主营:专业从事石英晶体元器件的开发、生产和销售。

官网:/

总部:广东

主营:石英晶体谐振器、石英晶体振荡器

官网:/

总部:南京

主营:石英晶体谐振器、振荡器、滤波器等

官网:

总部:河北

主营:压电石英晶振、振荡器

官网:/

总部:湖北随州

主营:音叉晶体谐振器、高频晶体

官网:/

总部:浙江

主营:石英晶体、石英晶体振荡器

官网:/

总部:香港

主营:石英晶体谐振器及振荡器

官网:

总部:浙江

主营:石英晶体谐振器

官网:/

总部:浙江

主营:石英晶体谐振器、石英晶体振荡器

官网:/

总部:福建

主营:石英晶体谐振器及振荡器

官网:

总部:北京

主营:石英晶体谐振器、石英晶体振荡器

官网:/

总部:深圳

主营:石英晶体谐振器、滤波器、及多功能振荡器

官网:

总部:深圳

主营:石英晶体谐振器,振荡器,钟振系列

官网:

如需转载请标明:

声明:转载仅限全文转载并完整保留作者署名,不得修改文章标题及内容。

手机:

A1、2015年国内知名手机ODM/OEM方案公司,你看了吗?

平板:

B1、国内平板产业链汇总

B3、英特尔,瑞芯微,全志,晶晨,联发科五大平板电脑处理器对比一览表

机顶盒:

C1、数字机顶盒与OTT机顶盒生产厂家详细介绍(100来家)

安防:

D1、国内安防百强企业及其详细介绍(100强)

智能穿戴:

E1、2015年可穿戴设备厂家(含代表作品和方案)及其芯片供应链

E2、近期很火热的智能手表公司及其代表产品(含方案)(65家)

E3、智能手环公司及其代表产品(包含方案介绍)(主流50家)

行车记录仪:

F1、行车记录仪主控芯片公司及其方案介绍

无人机:

G1、无人机产业链全景布*图(含代表厂家及其代表产品)

机器人:

H1、2016全球最具影响力机器人公司50强(TOP50)

物联网:

I1、物联网WiFi/BT/ZigBee芯片或模块汇总

VR:

J1、2016年火热的VR产业链及其厂家

K1、2015深圳企业百强(TOP100)

液晶屏:

L1、全球液晶面板制造厂商40强(TOP40)

L4、全球液晶屏、液晶模组制造厂商(含中小尺寸型号、参数、应用)

L6、智能穿戴所用小尺寸屏生产厂家及其型号介绍

电容触摸:

M1、触摸屏生产厂家前50强(TOP50)

M2、触控芯片设计原厂及其具体芯片型号规格参数

摄像头:

N1、摄像头模组生产厂家30强(TOP30)

存储:

O1、memroy存储厂家以及ROM、SDRAM、RAM、DRAM、SRAM、FLASH,EMMC的区别

WiFi:

P1、WiFi模组厂商及其方案商(TOP30)(含芯片原厂)

GPS:

Q1、GPS厂家产品及其公司详细介绍

指纹识别:

R1、指纹识别芯片厂商20强(TOP20)

电池:

S1、电源IC原厂企业介绍(Top80)

S3、锂电池产业链全景图及2015年锂电池年度竞争力

未经允许不得转载:财高金融网 » 泰晶科技是芯片股吗(湖北泰晶电子科技股份有限公司怎么样?)

相关推荐